R.V. Fisher · H.-U. Schmincke

Pyroclastic Rocks

With 339 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Contents

Chapter 1 Introduction

The Sedimentary Record: Volcanic (Co	nt	rit	out	io	n			 3
Chemical Composition of Tephra .									6
Types of Pyroclastic Accumulations									8

Chapter 2 Volcanoes, Volcanic Rocks and Magma Chambers

Tectonic Setting of Volcanoes		•	•	•	11 12 13 14
		·			1.5
Form of Volcanoes	• •	•	•	•	15
Origin of Magmas and Classification of Volcanic F	loc	ks			16
Basaltic Magmas					17
Basalts					18
Andesite-Suite Magmas				-	20
Andesites				.2	20
Differentiated Magmas					21
Magma Chambers					22
Volumes of Magma Chambers			1		22
Zonation in Magma Chambers		Π.			23
Large Calcalkalic Systems					27
Small Highly Alkalic Systems	10			1A	30
Oceanic Rhyolite-Basalt Systems		a pi	-	69	33
Very Small Mafic-Intermediate Magma Systems	s .				33

Chapter 3 Magmatic Volatiles and Rheology

Volatiles																						35
Methods	of	D	ete	err	nit	nir	Ig	Vo	ola	til	es											36
Composit	io	na	in	d /	An	10	un	t c	of	Vo	ola	tile	es		•		•	2	•		io	37
Water	3	5 -	- (lai	bo	on	D	102	x1d	le	43	-	Si	ilti	ır	47						
Volatile I	Dis	tri	bu	itic	on	in	N	1a	gn	na	Co	olu	ım	ns	•	•	•	•	•	•	•	48
Rheology .																						51
Viscosity									•													52
Vesiculation												•						•				55

Chapter 4 Explosive Volcanic Eruptions

Types of Volcanic Activity		59
Types of Eruptions		60
Pyroclastic Eruptive Systems		61
Eruption Columns		61
Plinian Eruptions and Eruption Columns		63
Hawaiian and Strombolian Eruptions		69
Observations 69 – Eruptive Mechanisms 69		
Hydroclastic Eruptive Processes		74
Formation of Glassy Pyroclasts		75
Granulation		77
Inhibition of Vesiculation		77
Transfer of Heat		78
Steam Eruptions.		78
Magma-Water Mixing and Fuel-Coolant Interaction		80
Phreatic and Phreatomagmatic (Vulcanian) Eruptions		82
Volcanic Energy		0.5

Chapter 5 Pyroclastic Fragments and Deposits

General Components						89
Vitric Particles and Pyrogenic Crystals						96
Glass Shards						96
Shards Formed by Vesiculation						96
Pumice						103
Pyrogenic Minerals						103
Surface Textures of Minerals and Shards						105
Structure						105
Duroclastic Ded on Chart	•	•	•	•	•	107
Canded De Ll'	•		•		•	107
Graded Bedding			•			109
Cross Bedding						110
Massive Beds						114
Alignment and Orientation Bedding						114
Penecontemporaneous Deformation Structures						115
Texture						116
Grain Size and Size Distribution	•	•	•	•	•	110
Distribution Curres	•	•	•	•	•	116
Shore and Development		•		•	•	118
Shape and Roundness	•	•	•		•	122
Fabric						123

Chapter 6 Subaerial Fallout Tephra

Components of Subaerial Fallout							128
Areal Distribution							132
Distribution and Thickness .							132
Volume						1.0	139

Design of the second se

Structures											141
Bedding											141
Mantle Bedding											144
Graded Bedding					•						148
Fabric		ų.	0	?							148
Size Parameters											150
Maximum Size of Components .										•	150
Median Diameter									•		151
Grain-Size Distribution (Sorting)	•		•		•	•	•	•	•	•	153
Eolian Fractionation											156

Chapter 7 Submarine Fallout Tephra from Subaerial Eruptions

Chemical Composition	•		•	163
Structures of Submarine and Lacustrine Ash Layers				166
Areal Thickness Distribution and Volume				168
Grain Size and Sorting				173
Regional Distribution and Tephrochronology				176
Source				176
Correlation and Age				177
Pacific Region				179
Atlantic Region		•		182

Chapter 8 Pyroclastic Flow Deposits

Historic Development of Concepts	187
The Deposits	192
Volume	192
Relationship to Topography	193
Flow Units and Cooling Units	195
Components	197
Primary Structures in Unwelded Deposits	198
Internal Layering 198 - Gas-Escape Structures 200	
Emplacement Facies	203
Texture	206
Pyroclastic Flow Deposits 207 – Pyroclastic Surge	
Deposits 208 – Segregation of Crystals and Lithics 208	
Chemical Composition	209
Temperature Effects	210
Measured Temperatures 210 – Inferred Temperatures	
211 - Welding and Compaction 213 - Structures	
Related to Temperature and Viscosity 215	
Thermoremanent Magnetism	218
Classification and Nomenclature	218

The Flows															
Origin	• •	•	•	•	•	•	•	•	•	•	•				22.
	• •	•	•												22
I ransport and Mobility															22
Tufolavas, Froth Flows,	, Fo	am	n L	Lav	as	a	nd	G	lol	bu	le	FI	оч	· /S	22
Ignimbrite Vents: Speculation	on														230

Chapter 9 Deposits of Hydroclastic Eruptions

Definition of Terms	
Components of Hydroclastic Deposits	23
Grain Size Distribution	. 23
Characteristics of Essential Components	. 23
Accretionary Lapilli	. 23
Accidental Clasts	. 238
Maximum Size of Fragments Related to Engrand	. 239
Ultramafic Xenoliths 241	39
Structures	
Penecontemporaneous Soft Sodiment D. c.	. 242
Vesicles (Gas Bubbles)	. 242
Bedding Sags	. 242
Mudcracks	. 245
Page Sume D	. 246
Base Surge Deposits.	. 247
Bed Forms from Base Surges	. 249
Sandwave Beds 250 – Plane-Parallel Beds 254 –	
Massive Beds 254	
LI Shared Cl	. 254
O-Shaped Channels	. 256
Maar Volcanoes	257
Classification	. 257
Origin	. 257
Dimensions	. 250
Areal Extent and Geometry 260 – Volume 261	. 200
Chemical Composition	262
Littoral Cones	. 202
Deposits	. 263
Origin	. 263
Penerites	. 264
repentes	. 264

Chapter 10 Submarine Volcaniclastic Rocks

Deep Water Stage											
Pillow Breccies	•	•	•	•	•	•		•	•		265
Fine ground Hard I	•	•		•		•					267
r me-grained Hyaloclastites .				•							270
Shoaling Submarine Volcano		•								1	274
Volcaniolastia Association - Subaerial	•	•		•			•				275
volcamenastic Aprons								1, I			276

Silicic Submarine Eruptions	79
Subaqueous Pyroclastic Flows	81
Terminology	85
Nonwelded Deposits	85
Environment of Deposition	85
Components	85
Grain Size, Sorting and Fabric	87
Bedding and Grading	87
The Massive Lower Division 289 – Upper Division 290	
Relationship to Eruptions and Eruptive Centers 2	92
Welded Deposits	93
Discussion	94

Chapter 11 Lahars

Debris Flows as Fluids .																298
Distribution and Thickness																299
Surface of Lahars																301
Basal Contact of Lahars .																302
Components of Lahars .																303
Grain-Size Distribution .				•		•		•					•			303
Vesicles																306
Grading																307
Fabric																308
Comparison of Lahars with	1 (Dtl	ner	K	in	ds	0	f	Co	ars	se-	G	rai	ne	d	
Deposits																309
Origin																309

Chapter 12 Alteration of Volcanic Glass

Diagenesis	312
Alteration of Basaltic Glass	314
Palagonite	314
Physical Properties 315 - Textural Changes 315 -	
Mineralogical Changes 317 - Zeolites 318 -	
Chemical Changes 320	
Process of Palagonite Formation	323
Rate of Palagonitization	326
Alteration of Silicic Glass	327
Hydration and Ion Exchange	327
Advanced Stages of Alteration	329
Saline Alkaline Lake Environment	330
Marine Environment	333
Bentonites and Tonsteins	336
Burial Diagenesis and Metamorphism	340

Chapter 13 Stratigraphic Problems of Pyroclastic Rocks

Relation of Volcanic Activity to Rock Stratigraphy	347
Volcanic Activity Units	347
Eruption Unit	349
Stratigraphic Problems in Young Volcanic Terranes	350
Stratigraphic Nomenclature in Older Volcanic Terranes.	350
Tephrochronology	352
Volcanic Facies.	356
Facies Based upon Position Relative to Source	356
Near-Source Facies 358 – Intermediate-Source Facies	
359 – Distant-Source Facies 359 – Caldera Facies 359	
Facies Based upon Environment of Deposition	361
Facies Based upon Primary Composition	361
Compositional Facies 362 – Petrofacies 365	
Diagenetic Rock Facies 365	
Stratigraphic Examples	367
Oshima Volcano, Japan	368
San Juan Volcanic Field, USA	371
Archean Greenstone-Belt Volcanoes, Canada	378

Chapter 14 Pyroclastic Rocks and Tectonic Environment

Convergent Margins, Magmatic Arcs, and Sedimentation .	383
The Trench	386
Fore-Arc and Back-Arc Basins	391
The Cordilleran System	392
Western North America: Paleozoic Rocks 392 -	
Southern South America: Upper Mesozoic Flysch 396-	
Cenozoic Tectonism and Volcanism: Western North	
America 398	
Oceanic Island Arc Settings	400
Volcaniclastic Rocks and Facies; Cenozoic 400 -	
Lau Basin and Tonga Arc 405 – Lesser Antilles Arc 405	
The Pre-Cambrian	408
References	410
Subject Index	449
Locality Index	465